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Where next?

Two kind of dynamics:

- Dynamics of Networks
(topological perturbations)

- Dynamics on Networks
(diffusive phenomena: epidemics, 

opinion dynamics…)

Of course they can happen at the same 

time...

Mixed Dynamics

Assumption:
Diffusive processes unfolding 
and topology evolution have 
comparable rates

Applications:
- Diffusion shape topology
- Topology shape diffusion
- Feedback loops

Dynamics on Networks

Assumption:
Diffusive processes 
unfolding is faster than 
topology evolution (if any)

Applications:
- Epidemic spreading
- Opinion Dynamics
- ...

Dynamics of Networks

Assumption:
Topology evolution is faster 
than diffusive processes 
unfolding (if any)

Applications:
- Link Prediction
- Dynamic Community 

Discovery
- ...



Representing Dynamic 
Topologies
A brief Introduction



Why bother of time?

Most real world networks are dynamic

- Facebook friendship
- People joining/leaving
- Friend/Unfriend

- Twitter mention network
- Each mention has a timestamp
- Aggregated every day/month/year => 

still dynamic

- World Wide Web
- Urban networks
- Protein-protein interactions
- Brain networks
- ...



Evolving 
Topologies

- Nodes can appear/disappear
- Edges can appear/disappear
- Nature of relations can change

How to represent those changes?

How to manipulate dynamic networks?

Semantic

Relation 
Vs. 

Interactions

Representation

Interval Graphs
Graph Series
Link Streams

Data Structure

Interval List
Sequence of Graphs

Temporal edgelist

Dynamic Networks
General Paradigm

Three different levels of abstraction



Semantics

Relations Vs. 
Interactions

Short term02
● Collaboration in a project
● Same team in a game
● Attendees of a same class

Long term01
● Friend
● Colleague
● Family

With Duration02
● Phone call
● Discussion
● Attendees of a same class

Instantaneous01
● Email
● Text message
● Co-authoring

Relations

Interactions

Topological perturbations may have different 

temporal scales depending on their intrinsic 

semantic value.

Two families:
- Relations (stable ties)

- Interactions (unstable ties)



Semantics and how 
to represent them

Relations
The graph is more and more stable, until most 

observations are completely similar to previous/later 

ones (frequency faster than change rate)

Interactions
The graph is less and less stable, until each 

observation is a graph in itself, thus completely 

different from previous/later ones (frequency faster 

than observed events rate)

Relations Interactions

Interval Graphs Graph Series Link Streams

Semantic Level

Representation Level

DN=(V,E,T,DV)

DV: VxTxT
E: VxVxTxT

DN=[G
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, G
2

,... , G
n
 ]

G
i
=(V,E)

E: VxV

DN=(V,E,T)

E: VxVxT

Snapshot Aggregation



Changing 
Representation

Alternative representations can be, to some 

extent, converted among them by applying 

appropriate data transformations

Interval Graphs Graph Series Link Streams

Reformulation

Aggregation

Discretization

Persistence



Unstable 
Snapshots

The evolution is represented as a series of a 
few snapshots

- Many changes between snapshots 
(Cannot be visualized as a “movie”)

- Each snapshot can be studied as a static 
graph

- Evolution of node properties can be 
studied “independently” 
(e.g., node i had low centrality in snapshot t and 
high centrality in snapshot t+n)



Stable Network

Edges change (relatively) slowly

The network is well defined at any t
- Temporal network: nodes/edges described by 

(long lasting) intervals
- Enough snapshots to track nodes

A static analysis at every (relevant) t gives a 
dynamic vision

No formal distinction with previous case 
(higher observation frequency)

Properties can be analyzed as time series

Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graph evolution: Densification and 
shrinking diameters." ACM Transactions on Knowledge Discovery from Data. (2007)



Unstable 
Temporal Network

The network at a given t is not meaningful

How to analyze such a network?

Until recently, network was transformed using 
aggregation/sliding windows

- Information loss
- How to choose a proper aggregation window size?

Holme, Petter, and Jari Saramäki. Temporal networks. Physics 
reports 519.3 (2012)



Unstable 
Temporal Nets

Stream Graph

S = (T, V, W, E)

T: Possible Time
V: vertices
W: Vertices presence in time, pairs like (v, t)
E: Edges presence in time

Latapy, M., Viard, T., & Magnien, C. (2018). Stream graphs and link 
streams for the modeling of interactions over time. Social Network 

Analysis and Mining, 8(1), 61.



Number 
of nodes

Number 
of edges

Neighbors 
of a node

Degree of 
a node

Stream Graph

Indices



Stream Graph

Paths and 
Distances

A path in a stream graphs

- Starts at a node and at a timestamp

- Ends at a node and at a timestamp

- Has a length 
(number of hops)

- Has a duration 
(duration from leaving node to reaching node)

Path: (d,1)(c,9)
Length: 3
Duration: 3

Path: (d,2)(c,8)
Length: 4
Duration: 6

Path: (b,0)(a,8)
Length: 4
Duration: 5



Stream Graph

Paths and 
Distances
Several types of shortest paths in Stream 
graphs:

Type Description

Shortest path Minimal length

Fastest path Minimal Duration

Foremost path First to reach

Fastest shortest 
paths

Minimum duration among 
minimum length

Shortest fastest paths Minimum length among 
minimum duration

a

b

c

d

e

f

From a to e (Foremost, Fastest, Shortest)

From (1,d) to (9,c)

Shortest path (2.5, d, b) (3, b, a) (7, a, c)

Fastest path (3, d, b) (3, b, a) (4.5, a, c)

Foremost path (2, d, b) (2, b, a) (4.5, a, c)

Fastest shortest path (3, d, b) (3, b, a) (4.5, a, c)

Shortest Fastest path from (3, d, b) (3, b, a) (4.5, a, c)



Community Detection in 
Dynamic Networks
Time flies like an arrow; fruit flies like a banana



Communities
In Dynamic Networks

Networks change with time…
- Nodes appear and vanish

- Edges appear and vanish

…communities must change too!

DCD: 
identify/track changes in community structure

Cazabet, Remy, and Giulio Rossetti. "Challenges in community discovery on temporal 
networks." Temporal Network Theory. Springer, Cham, 2019. 181-197.



A Novel Problem:

Community 
life-cycle tracking

As time goes by the rising of novel nodes and 

edges (as well as the vanishing of old ones) led 

to network perturbations

Communities can be deeply affected by such 

changes

Three main strategies:
- Identify & Match
- Informed Iterative algorithms
- Stable Identification



The Optimist:

“Ok, It’s a piece of 
cake!”

1. Find communities at each network 
observation (using a static algorithm)

2. Match communities across consecutive 
network observations

3. Observe differences
Two major issues:

- Community Smoothing
- Theseus’ Ship Paradox



Community 
Smoothness

Communities are arbitrarily defined 
(same issue of static CD)

Most “efficient” algorithms are stochastic

- Change in communities might be due to 

structural changes OR to arbitrary choices of 

the algorithm 

- The same algorithm ran twice on the same graph 

might yield different results

Desiderata:
-  a “simple” (parsimonious) model
-  a trade-off between quality and simplicity 

(smoothness)

No Smoothness:
Partition at each t should be the same as found by a static 
algorithm

Smoothness:
Partition at t is a trade-off between “good” communities 
for the graph at t and similarity with partitions at 
different times



Theseus’ Ship 
Paradox

Plutarch 75

I. Theseus killed the Minotaur in Crete and came 

back to Athens on his boat

II. His boat was conserved as memory during a very 

long time

III. The boat was deteriorating, so pieces of it were 

gradually replaced.

IV. Until one day, all original parts were replaced



Community evolution/identity is an arbitrary concept

A. Is this ship still the same as Theseus boat ?

B. If another boat was built using all pieces of the 

original boat, which one would be the “real” Theseus 

boat ?

Theseus’ Ship 
Paradox



Community Detection in 
Dynamic Networks
A taxonomy



DCD Algorithms 
Taxonomy

Hierarchical categorization

First Level: 
Increasing degree of smoothness (none -> complete)

Second Level: 
Algorithmic Approach (how to deal with Theseus)

-

G. Rossetti and R. Cazabet. Community 
Discovery in Dynamic Networks: a Survey.  

ACM Computing Surveys, 2018. 
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Instant Optimal

Temporal 
Trade-Off

Iterative
Similarity-Based

Iterative
Core-Nodes Based

Update by Set of Rule

Informed by Multi-Objective 
Optimization

Cross-Time

Multi-Step Matching

Infomed by Network Smoothing

Update by Global Optimization

Fixed Memberships,
Evolving Properties

Evolving Memberships,
Fixed Properties

Evolving Memberships,
Evolving Properties

Fixed Memberships, 
Fixed Properties



Taxonomy

Instant Optimal

Strengths 
Definition consistent with static CD, parallelisation

Drawbacks 
Lack of smoothness, only Snapshot Network repr.

“Communities found at time t are optimal for the 
network at time t”



1. Communities are detected at every 
step using a static algorithm (e.g. 
Louvain Algorithm)

2. Similarities are computed between 
communities in consecutive steps 
(at t and t+1 (e.g., Jaccard index))

3. Most similar communities are 
matched between t and t+1

Taxonomy

Two-Step 

Example

Advantages:
- Easy to model, can extend smoothly static approaches

Drawbacks:
- The reduction to static scenarios trough temporal 

discretization is not always a good idea
- How to choose the temporal threshold? 
- To what extent can we trust the obtained 

results?

Greene, et al. "Tracking the evolution of communities in dynamic social networks." 2010 
international conference on advances in social networks analysis and mining. IEEE, 2010



Taxonomy

Temporal Trade-Off

Strengths
Online, incremental, natural smoothness

Drawback
Iterative, risk of avalanche effect

“Communities found at time t represent a trade-off 
between the graph at t and its previous states”



1. Social Interactions define the 
communities a user belongs to

2. Dynamic graphs as edge streams

3. Online updates of communities as  
nodes/edges appear/vanish

Taxonomy

Tiles 

Example

Advantages:
- Punctual updates of the community structure
- Low computational complexity

Drawbacks:
- Ad-Hoc model

Rossetti, et al. "Tiles: an online algorithm for community discovery in dynamic 
social networks." Machine Learning 106.8 (2017): 1213-1241.



Taxonomy

Cross-Time

Strengths
Perfectly smoothed, stable, solution

Drawback
Non online, batch computation, lacks incrementality

“Communities at t are defined relatively to all other 
steps”



1. A transversal network is built: nodes are 
couples (nodes, time), edges link the same 
node in adjacent snapshots

2. A community detection algorithm is run 
on this transversal network

(Note: modified Modularity to avoid 
overestimating expected edges between nodes in 
different time steps, i.e., custom random graph)

Taxonomy

Transversal Network

Example

Advantages:
- Maximal smoothing and stability

Drawbacks:
- No Community Events are detected

- All the network history needs to be known in advance

Mucha, Peter J., et al. "Community structure in time-dependent, multiscale, 
and multiplex networks." science 328.5980 (2010): 876-878



Community Detection in 
Dynamic Networks
Evaluation strategies



Strategies

Internal Evaluation
- Partition quality function 

(i.e., modularity, conductance, density…)

- Community characterization 
(i.e., size distribution, overlap distribution…)

- Execution time and Complexity

External Evaluation
- Ground truth testing 

(or partitions comparison)



Ground truth 
testing: Issues

- Few real world datasets with annotated 
ground truth partition are available
(mostly static networks)

- Reliability of partition labelling
(semantic partitions not always reflect 
topological ones)

- Scarcity of network generators handling 
community dynamics 
(i.e. birth, death, merge, split)



Summarizing



Node/edge local dynamics affect community 
structures

- Communities are subject to events/operations
- Life-cycles can be identified and studied

The complexity behind such ill posed problem grows
- Stability/Persistence
- Smoothness

Every family of approaches depend on
- Specific analytical needs
- Dynamic Network Representation adopted

Mesoscale 
Evolutions

Example



https://andreafailla.github.io/teaching/osnam/


