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Link Prediction

Goal
Understanding how networks evolve

Problem definition

Given a snapshot of a network at time t,
(accurately) predict the edges that will

appear in the network during the interval
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Liben -Nowell, David, and Jon Kleinberg. "The link -prediction problem for social networks."
Journal of the American society for information science and technology 58.7 (2007): 1019-1031.




Examples of uses of

Link Prediction

Monitor terrorist networks —
deducing possible
interactions/missing links
between terrorists (without
direct evidence)

Suggest interactions or
collaborations that haven't yet
been exploited within an
organization

i)

Friendship prediction (i.e.,
Facebook)



Link Prediction

Link prediction is used to predict
in the network
(e.g., Facebook).

Or, it can be used to predict
due to incomplete data (e.g.,
Food-webs)
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Link Prediction

Task Complexity

1. GivenagraphG =(V,E) the set of
possible edges to be predicted is
O(|V]*2);

2. Real networks tend to be sparse

l Dense Graph Sparse Graph

False Positive prediction issue
(i.e., we are likely to predict edges that will never
appear)



Concretizing an
Intuition...

Scientists who are close in the
network
(i.e., have common colleagues)

— will likely collaborate in the
future

- make this intuitive notion precise
and understand which measures
of “proximity” leads to accurate
predictions




Link Prediction
Workflow

1. Consider asinputagraphGattimet

2. Consider all the possible pairs of nodes
(uv)

3. Compute a link formation score:
score(u,v)

4. Build alist of all possible edges ordered by
scores (from highest to lowest)

5. Verify, following that ordering, the
predictions on the graph at time t+1

score is a measure of

/

Timet

Time t+a

Time t+2a




Link Prediction

ﬂoproaches

Unsupervised

Define a set of proximity
measures unrelated to the
particular network

UNSUPERVESED MACHINE LEARNING

Supervised

Extract knowledge
from the network in
order to improve
prediction accuracy

SUPERVISED MACHINE LEARNING




Unsupervised Link
Prediction



Unsupervised Link
Prediction

Unsupervised measurements rely
on different structural properties
of networks

Neighborhood measures

- Common Neighbors, Adamic Adar,
Jaccard, Preferential Attachment

Path-based measures
- Graphdistance, Katz

Ranking
- Sim Rank, Hitting time, Page Rank

Liben-Nowell, David, and Jon Kleinberg. "The link -prediction
problem for social networks." Journal of the American society for
information science and technology 58.7 (2007): 1019-1031.




Unsupervised Link Prediction

Neighborhood measures

How many friends we have to share in order to become
friends?

Common Neighbors:
the more friends we share,
the more likely we will become friends

score (u,v) = [I'(u) NT'(v)|
Jaccard:
the more similar our friends circles are,
the more likely we will become friends

score (u,v) = w
7 T(w) Ur()




Unsupervised Link Prediction

Neighborhood measures

How many friends we have to share in order to become
friends? \

Adamic Adar:
the more selective our mutual friends are,
the more likely we will become friends

1

score (u,v) = —_
zer(%;r(v) log(IT'(2)[)

Preferential Attachment:

the more friends we have,

the more likely we will become friends
score (u,v) = |I'(u)| * |T'(v)]




Unsupervised Link Prediction

Path-based measures

How distant are we?

Graph Distance:

(negated) length of the shortest path between two
nodes

Katz:

weighted sum over all the paths between two
nodes

o0
score (u,v) = Z 8| paths ),
=1

where: paths,S',),, ={paths of length éxactly / 'from uto v}




Unsupervised Link Prediction

Ranking

How similar are we?

SimRank:
two nodes are similar to the extent that their
neighborhoods are similar

Z:sEr(u) Xnél"(v) 31m11ar1ty (a’b)
T (u) [T (v)]

score (u,v) = similarity (u,v)

similarity (u,v) = v *

We're so similar!



Unsupervised Link Prediction

Limitations

- Different kinds of networks are described
by the same general closed formula

- Anaverage overall performance
between 6% and 12%

- Nosingle winner

- Almost all predictors outperform the
random predictor
= there is useful information in network
topology



Supervised Link Prediction



Su perVised Li n k The process is now organized in 4 steps:
Prediction

1. Split the datain train/test

2. Learning a model on the train set

3. Use the model for prediction

4. Compare the prediction with the test set

A natural way todo it:
build a “classifier” over a set of network features.




gacking
Unsupervised Scores

root node

decision nodes
salary at least
$50,000

commute more
than 1 hour

Learn a Classifier (i.e., a Decision Tree)
over unsupervised LP scores to
generalize the assumption they made
on the network growth model

Decision Tree:
Should | accept a new
job offer?

leaf nodes




Supervised Link Prediction

Frequent Pattern
Mining

GERM

Evolution rules can be extracted from the
network history and used to identify/predict

recurrent patterns
- e.g., generalization of triadic closure

graph evolution rules

2
GER1 i", - > E‘,\:
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GER2 o = e
hoay head

Berlingerio, Michele, et al. "Mining graph evolution rules."
joint European conference on machine learning and
knowledge discovery in databases (2009).




Supervised Link Prediction

Network Embedding

Graphs can be mapped into vector spaces frorn a graph vepvesentation ... to veal vectov vepresentation
embedding

- Node/edge similarity scores can be used to define

metric spaces algovithm % ﬁ
A
= Metric spaces enable a more natural application o
of approaches from DM/ML oo

NB: Different “mappings” facilitate the solution
of different classes of problems




Supervised Link Prediction

LI Itatlons TVE FINALLY FouND
17... ATER 15 YEARS Joo
W5
1 If(\

- NoFree Lunch

- Model construction is often complex
and, usually, more time/resource
demanding than directly applying
unsupervised scores.

Results: Higher performances w.r.t.
unsupervised approaches

Embedding is not The Answer,
only a different way to reason on graphs...



Evaluation



Evaluation

Given a predictor p is there a way to decide ifitisa
one?

First Step:
verify that p outperforms the random predictor.

Random Predictor
each edge has the same probability to
appear in the network

4 rp N

performance (p) = TP FP

performance (p) performance (p)

ratio = -
V(-(vV-1
performance (prandom) w — |Eola |

K if ratio > 1 then p is meaningful /




Evaluation: Comparing Predictors
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Evaluation: ROC and PR curve

Precision Vs. Recall
- Precision: PPV = TP/(TP+FP)
- Recall: TPR = TP/(TP+FN)

ROC (Receiver operating characteristic) % p' | n'
- 1-Specificity: FPR = FP/(FP+TN) 2 p| TP | FN
- Recall: TPR = TP/(TP+FN) % n|FP | TN

:

-

Confusion Matrix
- ROC and PR spaces are isomorphic

(the use of ROC is more widespread)
- Numerical comparison can be done using
the AUROC (area under the ROC curve) 0 False Positive Rate 1




Link Prediction

Something more...

Accuracy could be improved extending simple
models with more complex (even semantic)
informations:

- Link strength
- Geographical information

Link Prediction needs to be revised while in some

scenarios:
- Dynamic Networks
- Multiplex networks

ML IKilometers,
0o s 3

Spatial network
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Key Messages

Predict new links that will arise in a network is not easy:

1.  Networks are, usually, sparse
2. Cold Start Problem

o What if | don’t have enough information?
[ | Can | predict bridges?

3. False Positive prediction

o Bridges !?!

4.  Simple approaches are “too simple”
5. Complex approaches are costly



Case Study:
Interaction Prediction in Dynamic Networks

ki



Case Study
Interaction Prediction

Link Prediction goal:

Predict ties that are not present in actual network
configuration.

Timet Time t+a

Ties are persistent structures that once appeared
cannot disappear (i.e., friendship...)

Interaction Prediction goal:

Predict interactions that will occur (either for the first
time or not) among nodes already observed in the
network.
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Interactions are volatile structures that can occur
multiple times and whose value can vanish as time
goes by (i.e., telephone calls...)

Rossetti et al. "Interaction prediction in dynamic networks
exploiting community discovery." IEEE/ACM ASONAM, 2015.




Semantic

Relations Vs.
Interactions

Relations

Friend
Long term e  Colleague
Family
Collaboration in a project
. . . Same team in a game
Topological perturbations may have different Short term ¢ mag
Attendees of a same class

temporal scales depending on their intrinsic

Interactions

Email

Instantaneous e  Text message
Co-authoring

Two families:
- Relations (stable ties)

- Interactions (unstable ties)
Phone call

With Duration e Discussion
Attendees of a same class




Case Study

Interaction Prediction

Idea:

e Model network evolution through temporal
snapshots;

e False Positive reduction:
Community Discovery as a bound for strong
ties;

e Time-Aware approach:
time series forecast of topological measures;

e  Supervised Approach:
ensemble of classifiers learnt on the
topological features, tested on the forecasted
ones.

GivenasetG={G,...G,,...G, }of ordered network
observations, witht € T ={0...1}, the interaction prediction
problem aims to predict new interactions that will took
place at time 1 + 1 thus composing G__ ,.

ses )



Case Study

Interaction Prediction

Step 1:
For each temporal snapshot t € T compute a partition

C.={C.y---,C, }of G ,using acommunity discovery algorithm.

Step 2:
For eacht € T compute a set of measures F for each nodes pair (u,v)
belonging to at least a community in C,

Step 3:
For each node pair (u, v) and feature f € F build a time series S"¥and
apply a forecasting techniques in order to obtain its future expected
value f*¥

Step 4:
Use the set of expected values f*¥to predict future intra-community
interactions.

O o< | [e*
Sn:pv;‘r:ots OZ>OT 0 g(\:on ________ Oé/e?_n & e ._\
— ‘ - | -

Future

i | Past
| '
v v
Interaction
Community | | | | =mmmmemmee- Prediction '
Sets /
J
Features
Time Series

Time Series
forecast
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Case Study
Interaction Prediction

Step 1: Community Discovery (CD)

Each CD algorithm proposes its own Community
Definition.

- Demon
(ego-network based, overlap)
- Louvain
(modularity, crisp partition)
- Infohiermap
(conductance, crisp partition)




Case Study
Interaction Prediction

Step 2: Features

On the identified communities we compute three set
of features:

- Pairwise Structural Features
(i.e., Jaccard, CN, Adamic/Adar...)
- Node Topology Features
(PageRank, edge betweenness...)
- Community Features
(i.e., density, size, shared communities, avg. clustering...)




Case Study
Interaction Prediction

Step 3: Time Series Forecast

For each time series we apply several forecasting
model in order to extract the expected future value.

Measure Description
Last Value (Lv) O = Zi—1
v
Average (Av) 6, = dmli= .
. D
Moving Average (Ma) | ©, = &=~ _

Linear Regression (L)

Opin = Olt"l*' h3,




Case Study
Interaction Prediction

Step 4: Classification

Once learned the features we design two different
experiments:

The positive and negative class are balanced
through downsampling to design a standard
baseline

ok
A A A
- Unbalanced Scenario \
The data positive/negative class ratio is
maintained. Due to network sparsity we observe
a strong negative prevalence (~98%)




Case Study

Interaction Prediction:

1.0 Social: ROCftJ_r\_/e 1.0 DBLP: ROC curve
0.8 0.8}
0.6} =y = 0.6}
g — DEMON Ma (.981) &
0.4} --- DEMON LR (.97) 0.4l
— Infohiermap Ma (.89)
o2l --- Infohiermap Lk (.886)|| .| — DEMON Ma (.907)
’ — Louvain Ma (.88) ' — Infohiermap Ma (.92)
--- Louvain LR (.883) — Louvain Ma (.93)
080 0.2 0.4 06 0.8 0 08 0.2 0.4 0.6 0.8 1.0
FPR FPR
Network DBLP Social
Algorithm AUC  ACC _[ALUC _ACC
DEMON Ma 0.907 85.% 0.981 93.55% > Very h|gh accuracy and AUC
DEMON LR | | 0. 8770
LOUVAIN Ma <_] 0.930 87.72% | 0880 80.27%
LOUVAIN LR 0. A8% | 0.883  81.37% CD approaches contribution to IP
INFOHIERMAP Ma | 0.920 86.69% | 0.890 81.34% ) .
INFOHIERMAP LR | 0.917 86.18% | 0.886  80.89% is topology sensitive




Case Study

Interaction Prediction:

(cont’d)

3 Structural Topology Community
Algorithm | J56 Ace ‘ AUC__ACC | AUC ACC
_ _ o DEMON | 0.957 90.59% 0962 91.44%.| 0.903 83.53%
Which feature set is the most predictive? LOUVAIN [ 0.850 78.63%(| 0.875 79.38% |)0.724 66.64%
INFOHIERMAP | 0.876 79.85% [N.887 80.81 0.667 62.11%
.- . . ; Ma LR
False Positive Filtering (FSF) Algorithm ’ AUC  ACC | AUC  ACC
Vs. SF 0.901 82.88% | 0.895 82.18%
No Filtering (SF) FSF 0.956 90.10% | 0.937 88.09%
o Algorithm AUC  ACC
All Forecast with Filtering DEMON All 0.981 93.90%
VS. LouvaIN All 0.901  83.05%
. : INFOHIERMAP All | 0.894 81.91%
No Filtering FS All 0.050  90.44%




Case Study

Negative class:

Social 95.9%
DBLP 98.9%

Very hard baselines

majority classifiers scores ~.96 and
~.99 precision

(always predicting “no edges”)

the proposed workflow is able to
reach ~.96 and ~.45 precision
w.r.t. the positive class

Interaction Prediction: Unbalanced Scenario

25 Social (Unbalanced): Lift Chart 16 DBLP (Unbalanced): Lift Chart
—— DEMON Ma —— DEMON Ma
\ --- DEMON Topology 14 --- DEMON Topology
20»\ —— DEMON Structural || 12t —— DEMON Structural |
3 --- DEMON Community --- DEMON Community
15»‘-.'-‘ — Baseline {10 — Baseline
i | 3 o |
10f -
5,
% 20 40 60 80 0 % 20 40 60
Percentaae of Dataset

80
Percentaae of Dataset
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Case Study

Interaction Prediction: What about weak links?

High accuracy is guaranteed by focusing the prediction on intra-community
interactions.

Inter-Community Interaction Prediction

Focus on the predicting the presence/absence of at least a new interaction
across two communities
- noidentification of the “real” endpoints

- noidentification of the multiplicity

|”

1. Construct a new network where the meta-nodes are the communities
2.  Apply the same workflow to such graph

Algorithm  AUC PPV (%)

Lv 0.594 33.33
Avg 0.632 07.02
Ma 0.647 50.00
LR 0.596 50.00

Flat Graph  0.316 57.20
Baseline 0.504 4.01

Infohiermap performances for
the inter-community prediction.
Like in the balanced scenario,
the Moving Average Ma fore-
casted features allow for the
best classification models

In bold the AUC of the best
performing approach



Case Study
Interaction Prediction

A \LAN B
n

B Conclusion

4\ A“’

Even though Interaction prediction is a complex problem
it is possible to reach high accuracy through:

Target selection:
False Positive reduction via Community Discovery
Weak interactions treated as “special cases”

Local topology history analysis:
Feature forecast via Time Series analysis

Moreover, each type of datasets demands a specific CD
algorithm:

One-to-one interactions (i.e., social ones)
Many-to-many interactions (i.e., co-authorship relations)



