
TP on Community Detection

andrea.failla@phd.unipi.it

November 2024

cdlib is a python library designed to provide support for extracting, analyz-
ing and comparing network clusterings. cdlib is mostly developed and main-
tained by Giulio Rossetti (ISTI-CNR, Italy) and Remy Cazabet (Univ. Lyon 1,
France). You can install it using pip

$pip install cdlib

This requires at least python 3.7. The library offers 90+ community discovery
algorithms organized into four families:

• Crisp (non-overlapping) communities

• Overlapping communities

• Fuzzy communities

• Node-attributed communities

• Communities on bipartite networks

• Link Communities

• Temporal communities

The library is well documented. Take a look in case you don’t know how to pro-
ceed. https://cdlib.readthedocs.io/en/latest/reference/reference.html.

1 Identifying Communities

1. Download data about co-acting relations during the first season of Game
of Thrones

$wget https://andreafailla.github.io/uploads/data/got-s1-edges.csv

1

https://cdlib.readthedocs.io/en/latest/reference/reference.html

2. Read the network with the following function and explore the network’s
basic properties: number of nodes, edges, density, and clustering coeffi-
cient.

def read_net_w(filename):

g = nx.Graph()

with open(filename) as f:

f.readline()

for l in f:

l = l.split(",")

g.add_edge(l[0], l[1], weight=int(l[2]))

return g

3. Use the Louvain algorithm to detect communities in the dataset:

from cdlib import algorithms

c_louv = algorithms.louvain(g)

c_louv.communities # list of communities

4. Find the number of communities and their sizes

5. louvain’s default resolution is 1.0. Change the parameter and check how
the number/size of the communities change

6. visualize the community structure using cdlib’s built-in viz utility:

from cdlib import viz

pos = nx.spring_layout(g)

viz.plot_network_clusters(g, communityobject, pos,

figsize=(20, 20))

7. You can also visualize communities as ”meta-nodes”, i.e., a graph where
each node represents a community:

viz.plot_community_graph(g, communityobject,

figsize=(10, 10))

1.1 Internal Evaluation

1. Compute communities with at least two other non-overlapping algorithms.

2

2. in the evaluation module, you will find several quality functions to eval-
uate graph clustering, e.g., modularity, size, internal edge density... Use
the viz.plot com properties relation method to compare the various
methods on size and internal edge density. (Check the documentation)

3. Which community algorithm returns the partition with the highest mod-
ularity? Why do you think that’s the case?

1.2 External/Qualitative Evaluation

• We will use external metadata about the characters’ houses. You can
download the data with:

$wget https://andreafailla.github.io/uploads/data/got-s1-attrs.csv

Then, use the first function to read the house data, and the second to
compute purity values for the communities in your partitions. Which
algorithm returns the purest communities (on average)?

def read_houses(filename):

node_to_house = {}

with open(filename) as f:

f.readline()

for l in f:

l = l.rstrip().split(",")

node_to_house[l[0]] = l[2]

return node_to_house

from collections import Counter

def community_purity(coms, attributes):

purities = []

for c in coms.communities:

houses = []

for node in c:

if node in attributes:

houses.append(attributes[node])

cnt = Counter(houses)

purity = max(cnt.values())/sum(cnt.values())

purities.append(purity)

return purities

3

• Let’s pretend that the communities identified by Louvain (resolution 1.0)
are the ”ground truth”. Compute NMI to find the which partition is closer
to the Louvain one (except louvain, of course).

4

	Identifying Communities
	Internal Evaluation
	External/Qualitative Evaluation

