
TP on Link Prediction

andrea.failla@phd.unipi.it

November 2024

linkpred is a python library designed to provide support to unsupervised
link prediction analysis. LinkPred is developed and maintained by Raf Guns
(University of Antwerp) You can install it using pip.

$pip install linkpred

This requires at least python 3.8. The library offers a wide number of unsuper-
vised predictors organized into four families:

• Neighborhood : AdamicAdar, AssociationStrength, CommonNeighbours,
Cosine, DegreeProduct, Jaccard, MaxOverlap, MinOverlap, NMeasure,
Pearson,ResourceAllocation

• Paths: GraphDistance, Katz

• Ranking : SimRank, RootedPageRank

• Miscellaneous: Community, Copy, Random

The library is documented with docstrings (i.e., comments in code with exam-
ples), you can check it here: https://github.com/rafguns/linkpred/tree/

main.

1 Unsupervised link prediction

1. Download data about co-acting relations during season 6 of Game of
Thrones

$wget https://andreafailla.github.io/uploads/data/got-s6-edges.csv

2. Explore the network’s basic properties: number of nodes, edges, density,
and clustering coefficient.

3. Select at least 3 methods and apply them to your dataset:

1

https://github.com/rafguns/linkpred/tree/main
https://github.com/rafguns/linkpred/tree/main

from linkpred import predictors

predictor = predictors.CommonNeighbours(g, excluded=g.edges())

results = predictor.predict()

4. Sort the predicted links by score and display the top 10 predicted edges.
Do these predictions make sense based on the network’s structure?

1.1 Evaluate Prediction Accuracy

1. We will test the predictors on data from the 7th season of GoT. You can
download the data with

!wget https://andreafailla.github.io/uploads/data/got-s7-edges.csv

Then, load the network in the same way as before. Store the network to
a variable called test

2. Using the Pair object from linkpred, we compute the universe and test
sets.

import random

import itertools

from linkpred.evaluation import Pair

Exclude test network from learning phase

training = g.copy()

Node set

nodes = list(g.nodes())

nodes.extend(list(test.nodes()))

Compute the test set and the universe set

test = [Pair(i) for i in test.edges()]

universe = set([Pair(i) for i in itertools.product(nodes, nodes) if i[0]!=i[1]])

3. Apply the predictors to the training network

4. use the EvaluationSheet object (from linkpred.evaluation import Evalua-
tionSheet) to evaluate the obtained prediction against the test

plt.plot(cn_evaluation.fallout(), cn_evaluation.recall(), label="Common Neighbors")

1.2 Community-Based Link Prediction

• Use the cdlib library to detect communities in the network (e.g., Louvain
method). Install cdlib with pip first, in case you don’t have it on your
machine/Colab.

2

• Compare the accuracy of link prediction within communities versus across
communities. Are links more likely to form within the same community?

2 Supervised Link Prediction

In this exercise, you will perform supervised link prediction using network prop-
erties and embeddings. Follow the steps below to complete the task.

1. Construct a feature set for each edge in the network. Some ideas: Link
Prediction Scores, difference in centralities of the nodes, etc.

2. Label each edge as a positive sample (existing edge) or a negative sample
(non-existing edge).

3. Split your dataset of labeled edges into a training set and a testing set.
Make sure to balance the samples in each set, ensuring a representative
mix of both positive and negative samples.

4. Using the training set, train a classifier. Feed the classifier with the com-
puted edge properties as input features and the labels as target values.
Adjust model parameters as needed.

5. Apply your trained model to the test set and predict whether each edge
is likely to exist. Evaluate the model’s performance

3

	Unsupervised link prediction
	Evaluate Prediction Accuracy
	Community-Based Link Prediction

	Supervised Link Prediction

